This article will explain:
The following figure shows the components of a Pod in the Istio data plane after it has been started.
The following two sidecar injection methods are available in Istio.
istioctl
.Whether injected manually or automatically, SIDECAR’s injection process follows the following steps.
The sidecar can be injected manually using the following command.
istioctl kube-inject -f ${YAML_FILE} | kuebectl apply -f -
This command is injected using Istio’s built-in sidecar configuration, see the Istio official website for details on how to use Istio below.
When the injection is complete you will see that Istio has injected initContainer and sidecar proxy-related configurations into the original pod template.
The Init container is a dedicated container that runs before the application container is launched and is used to contain some utilities or installation scripts that do not exist in the application image.
Multiple Init containers can be specified in a Pod, and if more than one is specified, the Init containers will run sequentially. The next Init container can only be run if the previous Init container must run successfully. Kubernetes only initializes the Pod and runs the application container when all the Init containers have been run.
The Init container uses Linux Namespace, so it has a different view of the file system than the application container. As a result, they can have access to Secret in a way that application containers cannot.
During Pod startup, the Init container starts sequentially after the network and data volumes are initialized. Each container must be successfully exited before the next container can be started. If exiting due to an error will result in a container startup failure, it will retry according to the policy specified in the Pod’s restartPolicy. However, if the Pod’s restartPolicy is set to Always, the restartPolicy is used when the Init container failed.
The Pod will not become Ready until all Init containers are successful. The ports of the Init containers will not be aggregated in the Service. The Pod that is being initialized is in the Pending state but should set the Initializing state to true. The Init container will automatically terminate once it is run.
For a detailed YAML configuration for the bookinfo applications, see bookinfo.yaml
for the official Istio YAML of productpage in the bookinfo sample.
The following will be explained in the following terms.
apiVersion: apps/v1
kind: Deployment
metadata:
name: productpage-v1
labels:
app: productpage
version: v1
spec:
replicas: 1
selector:
matchLabels:
app: productpage
version: v1
template:
metadata:
labels:
app: productpage
version: v1
spec:
serviceAccountName: bookinfo-productpage
containers:
- name: productpage
image: docker.io/istio/examples-bookinfo-productpage-v1:1.15.0
imagePullPolicy: IfNotPresent
ports:
- containerPort: 9080
volumeMounts:
- name: tmp
mountPath: /tmp
volumes:
- name: tmp
emptyDir: {}
Let’s see the productpage
container’s Dockerfile.
FROM python:3.7.4-slim
COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt
COPY test-requirements.txt ./
RUN pip install --no-cache-dir -r test-requirements.txt
COPY productpage.py /opt/microservices/
COPY tests/unit/* /opt/microservices/
COPY templates /opt/microservices/templates
COPY static /opt/microservices/static
COPY requirements.txt /opt/microservices/
ARG flood_factor
ENV FLOOD_FACTOR ${flood_factor:-0}
EXPOSE 9080
WORKDIR /opt/microservices
RUN python -m unittest discover
USER 1
CMD ["python", "productpage.py", "9080"]
We see that ENTRYPOINT
is not configured in Dockerfile, so CMD
’s configuration python productpage.py 9080
will be the default ENTRYPOINT
, keep that in mind and look at the configuration after the sidecar injection.
$ istioctl kube-inject -f samples/bookinfo/platform/kube/bookinfo.yaml
We intercept only a portion of the YAML configuration that is part of the Deployment configuration associated with productpage.
containers:
- image: docker.io/istio/examples-bookinfo-productpage-v1:1.15.0 # application image
name: productpage
ports:
- containerPort: 9080
- args:
- proxy
- sidecar
- --domain
- $(POD_NAMESPACE).svc.cluster.local
- --configPath
- /etc/istio/proxy
- --binaryPath
- /usr/local/bin/envoy
- --serviceCluster
- productpage.$(POD_NAMESPACE)
- --drainDuration
- 45s
- --parentShutdownDuration
- 1m0s
- --discoveryAddress
- istiod.istio-system.svc:15012
- --zipkinAddress
- zipkin.istio-system:9411
- --proxyLogLevel=warning
- --proxyComponentLogLevel=misc:error
- --connectTimeout
- 10s
- --proxyAdminPort
- "15000"
- --concurrency
- "2"
- --controlPlaneAuthPolicy
- NONE
- --dnsRefreshRate
- 300s
- --statusPort
- "15020"
- --trust-domain=cluster.local
- --controlPlaneBootstrap=false
image: docker.io/istio/proxyv2:1.5.1 # sidecar proxy
name: istio-proxy
ports:
- containerPort: 15090
name: http-envoy-prom
protocol: TCP
initContainers:
- command:
- istio-iptables
- -p
- "15001"
- -z
- "15006"
- -u
- "1337"
- -m
- REDIRECT
- -i
- '*'
- -x
- ""
- -b
- '*'
- -d
- 15090,15020
image: docker.io/istio/proxyv2:1.5.1 # init container
name: istio-init
Istio’s configuration for application Pod injection mainly includes:
istio-init
: for setting iptables port forwarding in the podistio-proxy
: running a sidecar proxy, such as Envoy or MOSNThe two containers will be parsed separately.
The Init container that Istio injects into the pod is named istio-init
, and we see in the YAML file above after Istio’s injection is complete that the init command for this container is.
istio-iptables -p 15001 -z 15006 -u 1337 -m REDIRECT -i '*' -x "" -b '*' -d 15090,15020
Let’s check the container’s Dockerfile again to see how ENTRYPOINT
determines what commands are executed at startup.
# ommit
# The pilot-agent will bootstrap Envoy.
ENTRYPOINT ["/usr/local/bin/pilot-agent"]
We see that the entrypoint of the istio-init
container is the /usr/local/bin/istio-iptables
command line, and the location of the code for this command-line tool is in the tools/istio-iptables
directory of the Istio source code repository.
The Init container’s entrypoint is the istio-iptables
command line, which is used as follows.
Usage:
istio-iptables [flags]
Flags:
-n, --dry-run Do not call any external dependencies like iptables
-p, --envoy-port string Specify the envoy port to which redirect all TCP traffic (default $ENVOY_PORT = 15001)
-h, --help help for istio-iptables
-z, --inbound-capture-port string Port to which all inbound TCP traffic to the pod/VM should be redirected to (default $INBOUND_CAPTURE_PORT = 15006)
--iptables-probe-port string set listen port for failure detection (default "15002")
-m, --istio-inbound-interception-mode string The mode used to redirect inbound connections to Envoy, either "REDIRECT" or "TPROXY"
-b, --istio-inbound-ports string Comma separated list of inbound ports for which traffic is to be redirected to Envoy (optional). The wildcard character "*" can be used to configure redirection for all ports. An empty list will disable
-t, --istio-inbound-tproxy-mark string
-r, --istio-inbound-tproxy-route-table string
-d, --istio-local-exclude-ports string Comma separated list of inbound ports to be excluded from redirection to Envoy (optional). Only applies when all inbound traffic (i.e. "*") is being redirected (default to $ISTIO_LOCAL_EXCLUDE_PORTS)
-o, --istio-local-outbound-ports-exclude string Comma separated list of outbound ports to be excluded from redirection to Envoy
-i, --istio-service-cidr string Comma separated list of IP ranges in CIDR form to redirect to envoy (optional). The wildcard character "*" can be used to redirect all outbound traffic. An empty list will disable all outbound
-x, --istio-service-exclude-cidr string Comma separated list of IP ranges in CIDR form to be excluded from redirection. Only applies when all outbound traffic (i.e. "*") is being redirected (default to $ISTIO_SERVICE_EXCLUDE_CIDR)
-k, --kube-virt-interfaces string Comma separated list of virtual interfaces whose inbound traffic (from VM) will be treated as outbound
--probe-timeout duration failure detection timeout (default 5s)
-g, --proxy-gid string Specify the GID of the user for which the redirection is not applied. (same default value as -u param)
-u, --proxy-uid string Specify the UID of the user for which the redirection is not applied. Typically, this is the UID of the proxy container
-f, --restore-format Print iptables rules in iptables-restore interpretable format (default true)
--run-validation Validate iptables
--skip-rule-apply Skip iptables apply
The above incoming parameters are reassembled into iptables rules. For more information on how to use this command, visit tools/istio-iptables/pkg/cmd/root.go
.
The significance of the container’s existence is that it allows the sidecar agent to intercept all inbound and outbound traffic to the pod, redirect all inbound traffic to port 15006 (sidecar) except port 15090 (used by Prometheus) and port 15092 (Ingress Gateway), and then intercept outbound traffic from the application container which is processed by sidecar (listening through port 15001) and then outbound. See the official Istio documentation for port usage in Istio.
Command analysis
Here is the purpose of this start-up command.
istio-proxy
user identity, with a UID of 1337, the userspace where the sidecar is located, which is the default user used by the istio-proxy
container, see the runAsUser field of the YAML configuration.Because the Init container is automatically terminated after initialization, since we cannot log into the container to view the iptables information, the Init container initialization results are retained in the application container and sidecar container.
The startup process of a Pod with Sidecar auto-injection enabled is as follows.
istio-proxy
container starts, pilot-agent
will be the PID 1 process, which is the first process in the Linux user space and is responsible for pulling up other processes and handling zombie processes. The pilot-agent
generates the Envoy bootstrap configuration and fork the envoy process; the application container is started almost simultaneously with the istio-proxy
container, and the readiness probe comes in handy to prevent the container inside the Pod from receiving outside traffic before it is ready to start. Kubernetes will perform a readiness check on port 15021 of the istio-proxy
container, and the kubelet
will not route traffic to the Pod until the isito-proxy
has finished booting.pilot-agent
becomes a daemon that monitors the rest of the system and provides Envoy with Bootstrap configuration, certificates, health checks, configuration hot reloading, identity support, and process lifecycle management, among other things.In the process of Pod startup there is a container startup order problem. Suppose the following situation, the application container starts first and requests other services, when the istio-proxy
container has not finished starting, then the request will fail, and if your application is not robust enough, it may even cause the application container to crash and the Pod to restart. The solution for this situation is to
Running
if the detection is successful.This article walks you through the process of starting Pods in the Istio data plane, and the issues that arise because of the order in which Pod contenters are started.
Last updated on Dec 12, 2024